

Spin Asymmetries for High-p_T **Pions and Jets**

Marco Stratmann

University of Regensburg

- brief tour: QCD framework
- results: pions and jets at mid and forward rapidities
- outlook: calculations in the pipeline

Cross sections relevant for RHIC spin

main goal of RHIC spin program with longitudinal polarization:

pin down all aspects of helicity pdfs, in particular the poorly known Δg

→ study processes with a *dominant* gluon contribution in LO:

	reaction	LO subprocesses	partons probed	x -range $(\eta = 0)$
	$pp o jets\ X$	$qar{q}, qq, qg, gg ightarrow \mathrm{jet} X$	Δq , Δg	$x \gtrsim 0.03$
	$pp o \pi X$	$q \bar{q}, q q, q g, g g \rightarrow \pi X$	Δq , Δg	$x \gtrsim 0.03$
	$pp o \gamma X$	$qg o q\gamma$, $qar q o g\gamma$	Δg	$x \gtrsim 0.03$
	pp o Qar Q X	$gg o Qar{Q}, qar{q} o Qar{Q}$	Δg	$x \gtrsim 0.01$
	$pp o W^\pm X$	$q\bar{q}' \to W^{\pm}$	Δu , $\Delta \bar{u}$, Δd , $\Delta \bar{d}$	$x \gtrsim 0.06$

Perturbative QCD approach for hadron-hadron cross sections

starting point: • exploit universality of pdf's

• invoke *factorization*

- Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.; . . .
- → way to separate long-distance (= non-perturbative) from short-distance (= perturbative) phenomena

example: (un)polarized high- p_T single-inclusive hadron production

ingredients: parton densities $f_a(x_a)$, $f_b(x_b)$, fragmentation fcts. $D_c^h(z)$, hard partonic cross section $\hat{\sigma}$

Factorized $\vec{p}\vec{p}$ cross sections

long-distance

short-distance

calculable in pQCD: power series in α_s

neglected

- · controlled by arbitrary factorization scales μ_f and $\mu_f'\simeq \mathcal{O}(p_T)$ [amount of "parton radiation" $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ included in $\Delta f_{a,b}$, D_c^h]
- · another arbitrary scale controls the running of α_s : renormalization scale μ_r

Factorized $\vec{p}\vec{p}$ cross sections (cont.)

measured cross section *must not* depend on theoretical scales: $\mu_f \frac{d\Delta\sigma}{d\mu_f} = 0$

 $\leftrightarrow d\Delta \hat{\sigma}(\mu_f \to \mu_f + d\mu_f, \mu_f')$ canceled by scale behavior of $\Delta f_{a,b}(x_{a,b}, \mu_f)$

catch: . . . we work with a perturbative expansion in α_s :

$$d\Delta \hat{\sigma} = d\Delta \hat{\sigma}^{(0)} + \alpha_s d\Delta \hat{\sigma}^{(1)} + \alpha_s^2 d\Delta \hat{\sigma}^{(2)} + \dots$$

 μ_f cancellation only happens to all orders

LO : no cancellation whatsoever

NLO: cancellation starts to work

NNLO : better and better

. . .

→ higher order calculations mandatory

typical example: 3-jets @ TeVatron (Z. Nagy)

NLO corrections in a nutshell

going beyond the LO is in every respect a major enterprise . . .

- NLO techniques are well established and most cross sections are available
- NNLO still far from being standard, a lot of progress though recent example: the NNLO DGLAP evolution kernels P_{ij} Moch, Vermaseren, Vogt
 - → NNLO = pushing computer algebra programs to their limits

	# diagrams	# integrals
LO	18	a few
NLO	350	some more
NNLO	9607	$\sim 10^5$

NLO corrections in a nutshell (cont.)

at $\mathcal{O}(\alpha_s^3)$ (NLO) one has to consider:

ullet one-loop (virtual) corrections to all LO 2 o 2 processes

ullet all conceivable 2 o 3 parton-parton scattering processes this includes additional gluon emission to existing LO processes

$$qq'
ightarrow qq'g$$
, $qar{q}
ightarrow ggg$, $gg
ightarrow ggg$, etc.

as well as genuine NLO processes not possible at $\mathcal{O}(\alpha_s^2)$

$$qg o qq'ar{q}'$$
, $qg o qqar{q}$, etc.

NLO corrections in a nutshell (cont.)

good news: steady progress – list of results relevant for RHIC spin:

evol. kernels	ΔP_{ij}	NLO	Mertig, van Neerven; Vogelsang	
hadrons	hadrons $\vec{p}\vec{p} o H + X$		De Florian; Jäger, Schäfer, MS, Vogelsang	
	$\vec{p}\vec{p} \to H_1 + H_2 + X$	NLO	Jäger, Owens, MS, Vogelsang (very soon)	
	p ec p o ec H + X	NLO	Jäger, MS, Vogelsang (in preparation)	
jets	$\vec{p}\vec{p} \to \mathrm{jet}(\mathrm{s}) + X$	NLO	De Florian et al.; Jäger, MS, Vogelsang	
prompt γ $\vec{p}\vec{p} \rightarrow \gamma + X$		NLO	Gordon, Vogelsang; Contogouris et al.	
	$\vec{p}\vec{p} \rightarrow \gamma\gamma + X$	NLO	Coriano, Gordon	
	$p\vec{p} o \vec{\gamma} + X$	NLO	Vogelsang	
γ + jet	$\vec{p}\vec{p} \rightarrow \gamma + \mathrm{jet} + X$	NLO	Gordon	
γ + charm	$\vec{p}\vec{p} \rightarrow \gamma + c + X$	NLO	Berger et al. $(m_c = 0)$	
heavy quarks	$\vec{p}\vec{p} o Qar{Q}X$	NLO	Bojak, MS	
Drell-Yan	$ec{p}ec{p} ightarrow (\gamma^*) X$	NLO	Weber; Gehrmann;	
		NNLO	Smith et al.	
vector bosons	$\vec{p}\vec{p} \to (Z^0, W^{\pm})X$	NLO	Weber; Gehrmann	
	$p\vec{p} \to (Z^0, W^{\pm})X$	NLO	Weber; Gehrmann	

high-p_T pions:

Le de la marie de

NLO: Jäger, MS, Vogelsang; de Florian

 $m{recall}:~1^{st}~unpolarized~measurements~at~RHIC~agree~well~with~pQCD$

→ foundation for similar measurements with polarization

Interlude: importance of unpolarized cross sections

unpolarized measurements should always precede an $A_{\rm LL}$ measurement:

- demonstrate applicability of standard perturbative QCD methods
 - · not a priori known where power corrections _____, etc. set in
- measurements at $\sqrt{S} = 200 \, \mathrm{GeV}$ never done before
 - · allows us to study energy dependence of cross sections at a given p_T (fixed target) ightarrow RHIC ightarrow SPS ightarrow Tevatron ightarrow LHC
- valuable source of information about non-perturbative functions
 - · e.g. to improve our understanding of hadronization (fragmentation functions)
 - \rightarrow reduces theoretical uncertainties of subsequent extractions of, e.g., $\Delta g!$

a closer look at pQCD results for π^0 -production at $\sqrt{S} = 200 \, \mathrm{GeV}$, $|\eta| \leq 0.38$:

 μ_f dependence much reduced in NLO

NLO corrections different for $d\Delta\sigma$ and $d\sigma$ \rightarrow do not cancel in $A_{\rm LL}=d\Delta\sigma/d\sigma$

Is the spin asymmetry $A_{\rm LL}$ sensitive to unknown gluon polarization Δg ?

...

 $x\Delta G(x) \text{ at } Q_0^2 = 4.0 \text{ GeV}^2$ $= \frac{\text{Method 1}}{\text{O.4}}$ $= \frac{\text{BB}}{\text{GRSV}}$ $= \frac{\text{AAC}}{\text{AAC}}$

predictions for very different Δg

theor. syst. uncertainties

10 -3 10 -2 10 -1

X

exper syst uncertaintie

all compatible with current DIS data

estimate of statistical precision:

$$\delta A_{\rm LL} \simeq \frac{1}{\mathcal{P}^2} \frac{1}{(\mathcal{L} d\sigma_{\rm bin})^{1/2}}$$

 \mathcal{P} : beam polarization; \mathcal{L} : integrated luminosity

note:

- (1) for $p_T \le 10 \,\text{GeV}$: $A_{LL} > 0$
- (2) $\mathcal{L} = 3 \, \mathrm{pb}^{-1}$ assumed

discussion of first results on A_{LL} :

trend for $A_{\rm LL} < 0$ at small p_T contrary to expectations

How can that be?

PHENIX measures at central rapidities

Naive analysis:

need process with $\hat{a}_{\rm LL} < 0$ recall partonic asymmetries

$$egin{aligned} gg &
ightarrow gg & \hat{a}_{\mathrm{LL}} > 0 \ gg &
ightarrow qar{q} & \hat{a}_{\mathrm{LL}} = -1 \ gq &
ightarrow gq & \hat{a}_{\mathrm{LL}} > 0 \end{aligned}$$

conclude:

$$gg o qar q$$
 resp. for neg. $A_{
m LL}^\pi$

NO!

$$\Delta \hat{\sigma}_{gg \to gg} \simeq 160 \ \Delta \hat{\sigma}_{gg \to q\bar{q}}$$
 $(\eta \simeq 0)$

So - can A_{LL}^{π} be negative?

Jäger, Kretzer, MS, Vogelsang

subprocess contributions:

fairly independent on what one assumes about Δg :

gg processes:

dominate for $p_T \lesssim 10 \, \mathrm{GeV}$

qg processes:

take over for $p_T \gtrsim 10 \, \mathrm{GeV}$

qq processes:

always small unless p_T very large

not yet taken into account:

both partons are not probed at the same momentum fraction x

 \rightarrow even for $\hat{a}_{\rm LL}>0$ we can have $A_{\rm LL}<0$ if $\Delta f_a(x_a)\Delta f_b(x_b)<0$

we can even analytically derive a lower bound on A_{LL} :

$$\frac{d\Delta\sigma}{dp_T} = \sum_{a,b,c} \Delta f_a(x_a) \otimes \Delta f_b(x_b) \otimes \frac{d\Delta\hat{\sigma}_{ab}(x_a,x_b,z_c)}{dp_T} \otimes D_c^h(z_c)$$

take
$$x_T^2 \equiv 4p_T^2/S$$
 moments $\int dx_T^2 (x_T^2)^{N-1} \dots \to \text{convolutions turn into products}$
$$\Delta \sigma^\pi(N) = \left(\Delta g^{N+1}\right)^2 \mathcal{A}^N + 2\Delta g^{N+1} \, \mathcal{B}^N + \mathcal{C}^N \ \downarrow \ gg \qquad qg \qquad qq$$

this is a parabola in $\Delta g^N \to \text{minimize}!$

minimization yields:
$$\Delta\sigma^{\pi}(N)\Big|_{\min} = -\frac{\left(\mathcal{B}^{N}\right)^{2}}{\mathcal{A}^{N}} + \mathcal{C}^{N}$$

 \rightarrow negative, but tiny lower bound $A_{\rm LL}^{\pi}\big|_{\rm min} \simeq \mathcal{O}(-10^{-3}) \ggg$ indications from data

as expected:

the resulting Δg has a node

i.e.,
$$\Delta g(x_a)\Delta g(x_b) < 0$$

but still way too early to cry!

- "problem" only in lowest p_T bin where uncertainties are large
- p_T perhaps too small to apply pQCD [it works for $d\sigma/dp_T$ though!]

we need much more data to call this a new "spin surprise"

another lesson: around mid-rapidity and for $p_T \lesssim 10\,{
m GeV}$ it is difficult to even pin down the sign of Δg

reason: gg dominance and $\eta \simeq 0 \leftrightarrow x_a \simeq x_b$

What about $A_{\rm LL}^{\pi}$ measurements away from $\eta \simeq 0$?

idea: $|\eta| \gg 0$: partonic system boosted

 \rightarrow probes highly asymmetric x_a , x_b

expect: dominance of qg sets in earlier

ightarrow sign/size of A_{LL}^{π} tied to sign/size of Δg

error estimates for $\mathcal{L} = 7\,\mathrm{pb}^{-1}$, $\mathcal{P} = 0.4$

[more plots on Bernd Surrow's homepage]

with more luminosity one can go to higher p_T at $\langle \eta \rangle \simeq 0$ plus $A_{\rm LL}^{\pi^\pm}$ vs. $A_{\rm LL}^{\pi^0}$

idea: qg starts to dominate for $p_T\gtrsim 5\,{
m GeV}$ and $D_u^{\pi^+}>D_u^{\pi^0}>D_u^{\pi^-}$, $D_g^{\pi^+}=D_g^{\pi^-}$

expect: sensitivity to sign of Δg , e.g., positive Δg : $A_{\rm LL}^{\pi^+} > A_{\rm LL}^{\pi^0} > A_{\rm LL}^{\pi^-}$

High-p_T Jet Production at RHIC

single-incl. jet production:

jet = bunch of particles in a small pencil-like cone; all final-state sing. cancel jet production proceeds through the same partonic subprocesses as π -production:

 π 's have roughly $\langle z \rangle \simeq 0.5$:

 $\rightarrow \pi$ with $p_T \simeq$ jet with $2p_T$

comparison to hadrons:

- √ higher rates
- \checkmark no uncertainties from D(z)
- × dependence on precise definition of jet

pQCD results for jet-production at $\sqrt{S} = 200 \, \mathrm{GeV}$, $R_{\mathrm{cone}} = 0.4 \, (\mathrm{SCA})$, $|\eta| \leq 1$:

 μ_f dependence much reduced in NLO theoretical uncertainties even smaller than for hadrons

not surprisingly, $A_{\mathrm{LL}}^{\mathrm{jet}}$ is sensitive to gluon polarization Δg :

[fig. taken from Jäger, MS, Vogelsang]

again: at small p_T no sensitivity to sign of Δg

subprocess contributions for different Δg :

very similar to pion production (as expected)

Outlook: calculations in the pipeline

high-p_T hadron pairs

Jäger, Owens, MS, Vogelsang

status: Monte-Carlo code almost ready

feedback: at which observables ($p_{T,1}, p_{T,2}, M_{pair}, \ldots$) would you like to look at?

A_{TT} for single inclusive high-p_T hadrons

Mukherjee, MS, Vogelsang

status: almost done (have to put everything together and produce a code)

heavy flavor pair production

MS, volunteers

status: some homework to be done (matrix elements known from Bojak, MS)

have to setup a MC code to study exp. relevant observables